

Various Analysis Items and their significance

$pH(H_2O)$

- Concentration of free form H⁺ in soil solution
- $pH = log (H^+)$
- Add 25 ml of water to 10g of soil.
- Shake 30 minutes.
- Measure the pH of turbid suspension using pH meter.

Factors affecting soil $pH(H_2O)$

- Fertilizer application
- Nutrient absorption by crops
- Seasonal change in climate, precipitation
- Partial pressure of CO2
- Activity of soil microbes
- Decomposition of soil organic matter
- Saturation degree of soil bases
- Leaching of soil bases
- Nitrification (NH_4^+, NO_3^-)

pH meter & EC meter

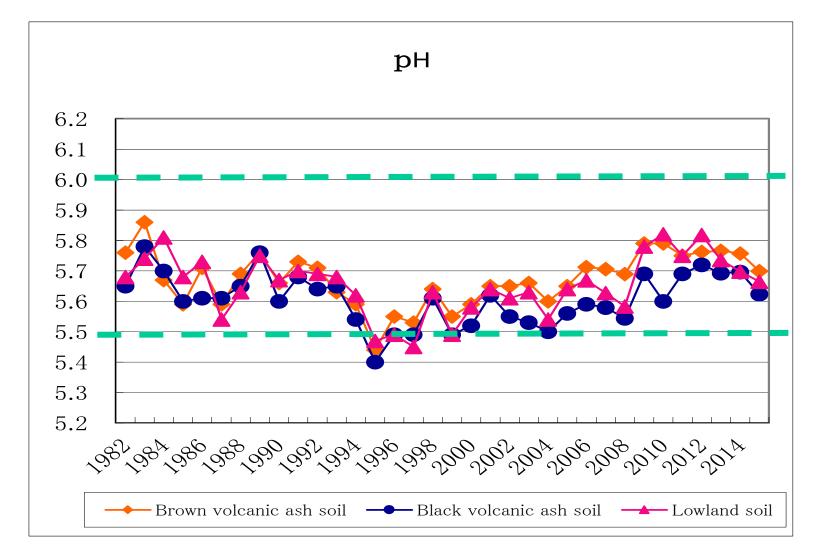
pH(KCl)

- Reflect the concentration of H⁺ and Al³⁺ adsorbed electrostatically to clay and humus.
- pH(KCl) decreases when degree of saturation by basic cations is low.
- Add 25 ml of 1 M KCl to 10g of soil.
- Shake 30 minutes.
- Measure the pH of turbid suspension using pH meter.

Meaning of soil pH(KCl)

- Highly correlated with Al saturation degree of soil.
- pH(KCl) lower than 5.2 means
 - \rightarrow occurrence of exchangeable Al³⁺
 - \rightarrow Inhibition of plant growth by Al³⁺
- $Al^{3+} + H_2O \rightarrow Al(OH)^{2+} + H^+$
- $Al(OH)^{2+} + H_2O \rightarrow Al(OH)_2^+ + H^+$

$pH(0.01M CaCl_2)$


- Masking the effect of seasonal change and farm management
- To reflect the actual root zone environment more accurately, soil pH under dilute electrolyte concentration is more appropriate.

Meaning of soil pH

< 5.0	Very acidic
5.0 - 5.5	Acidic
5.5 - 6.0	Weakly acidic
6.0 - 6.5	Slightly acidic
6.5 - 7.0	Neutral
7.0 - 7.5	Slightly alkaline
7.5 - 8.0	Weakly alkaline
8.0 - 8.5	Alkaline
8.5 <	Very alkaline

Change in soil pH in Tokachi

Tokach Federation of Agricultural Co-operatives, Institute

Effect of pH on plant growth

- H^+ ion inhibits the function of root (pH < 4)
- Increase in Al³⁺ ion (Inhibit growth at >1 ppm level)
- Inhibit absorption of N, P, K, Ca, Mg, B, Mo and symptom of deficiency (in acidic range)
- Excess in Cu, Zn, Mn, Fe (in acidic range)
- Deficiency in Cu, Zn, Mn, Fe (in alkaline range)

Exchangeable Acidity

- Weigh 10 g of air dried soil in to a flask or bottle.
- Add 25 mL of 1N KCl.
- Shake for 1 hour.
- Filter through a filter paper (Advantec No.6).
- Take 10 mL of the filtrate into a flask and titrate with 0.1 N NaOH.
- Consumed mL is multiplied by 12.5.
- Obtained value is Y₁.

Electric conductivity (EC)

- Reflect total concentration of water soluble ions in soil solution
- Add 50 ml of deionized water to 10g of soil, shake 30 min. Measure EC of turbid suspension using EC meter.
- Unit is S/m, mS/cm or μ S/cm, S: Siemens (1S/m=10 mS/cm = 10⁴ μ S/cm)

Meaning of soil EC

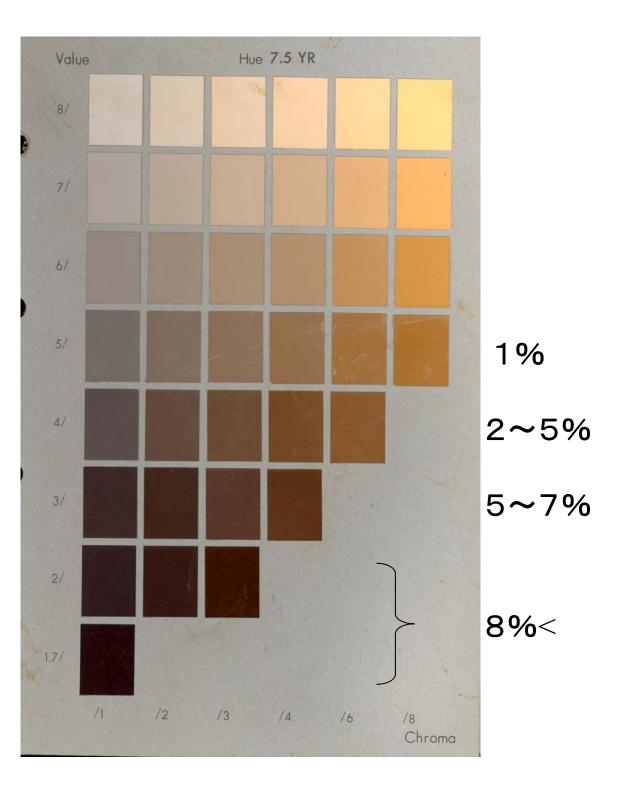
- High correlation with nitrate NO₃⁻ content
- Malnutrition under low EC(< 0.1 mS cm⁻¹)
- Growth damage at high EC (> 1 mS cm⁻¹)
- Adjust fertilizer application rate according to EC

Greenhouse soil diagnosis according to pH and EC

			· •		
$pH(H_2O)$	7.0	Excess Ca → Apply sulfate fertilizer	Suitable	Excess fertilizer - No fertilizer, Remove salts by flooding	\rightarrow
hq	5.5	Insufficient fertil Apply fertilizer a organic matter	izer →	Excess N fertilize Frequent Waterin Remove salts by flooding	

0.4 1.0 EC (mS/cm)

Application rate of basal fertilizer (N, K) according to soil EC(dS m⁻¹) in upland field

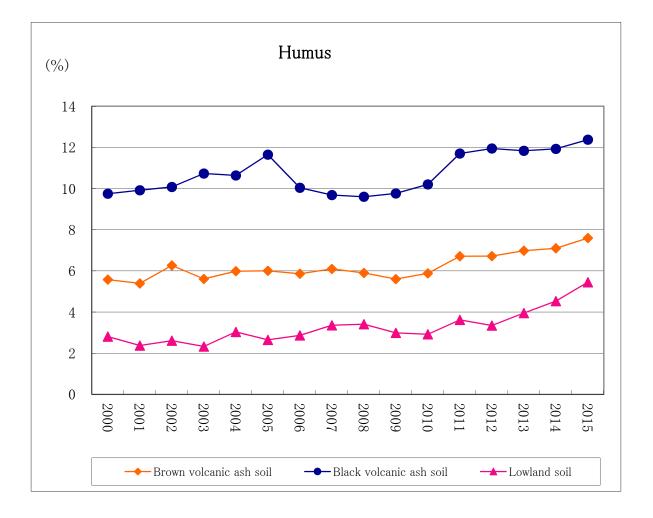

Soil Type	< 0.3	0.4-0.7	0.8-1.2	1.3-1.5	1.6 <
Humic andosoil	Standard rate	2/3	1/2	1/3	No fertilizer
Sandy• Fine textured	Standard rate	2/3	1/3	No fertilizer	No fertilizer
Sand dune/ immature	Standard rate	1/2	1/4	No fertilizer	No fertilizer

Humus

- Humus = Soil organic matter Method of determination
- Rapid estimation by soil color
- Tyurin method (Potassium dichromate oxidation/ Titration)
- Dry combustion method (Instrumental analysis)

Standard Soil Color Chart Hue 7.5YR

Relationship between soil color and organic matter content



Importance of humus

- Soils with high humus content are generally fertile and easily manageable.
- Exception \rightarrow Andosoil (Kuroboku in Japan)
- Supply nutrients (especially N)
- Hold soil moisture
- Hold nutrients (Cation Exchange Capacity)
- Formation of Soil Aggregate Structure

Change in soil humus in Tokachi

Tokach Federation of Agricultural Co-operatives, Institute

Nitrogen Analysis

• Nitrogen is the most important constituent of fertilizer.

Inorganic nitrogen

- Ammonium nitrogen
 Extracted by 1N KCl, 2N KCl
- Nitrate nitrogen

Extracted by Water, 1N KCl, 2N KCl

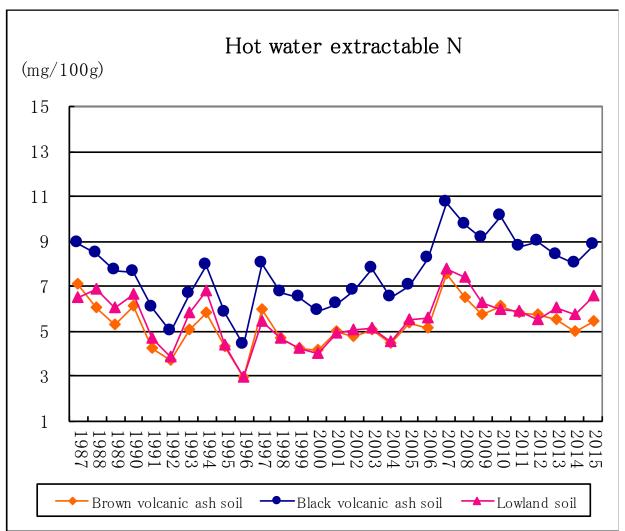
- Determine by steam distillation/ titration or colorimetry
- Rapidly available to crops

Available nitrogen

- Potential amount of inorganic nitrogen formation
- After incubating 4 weeks at 30 °C, total amount of formed inorganic nitrogen is determined.
- Incubation under upland or paddy condition.
- Problem: Time consuming method

Phosphate buffer (pH7) extraction method (Rapid estimation method for available nitrogen)

• Extracted nitrogen content or absorbance at 420 nm of the extracted solution showed high correlation with available nitrogen estimated by incubation method.

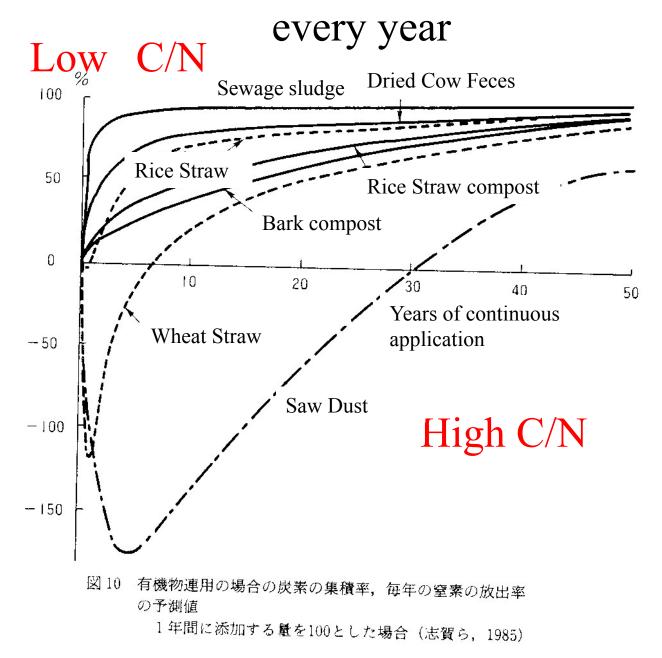

Hot water extractable nitrogen

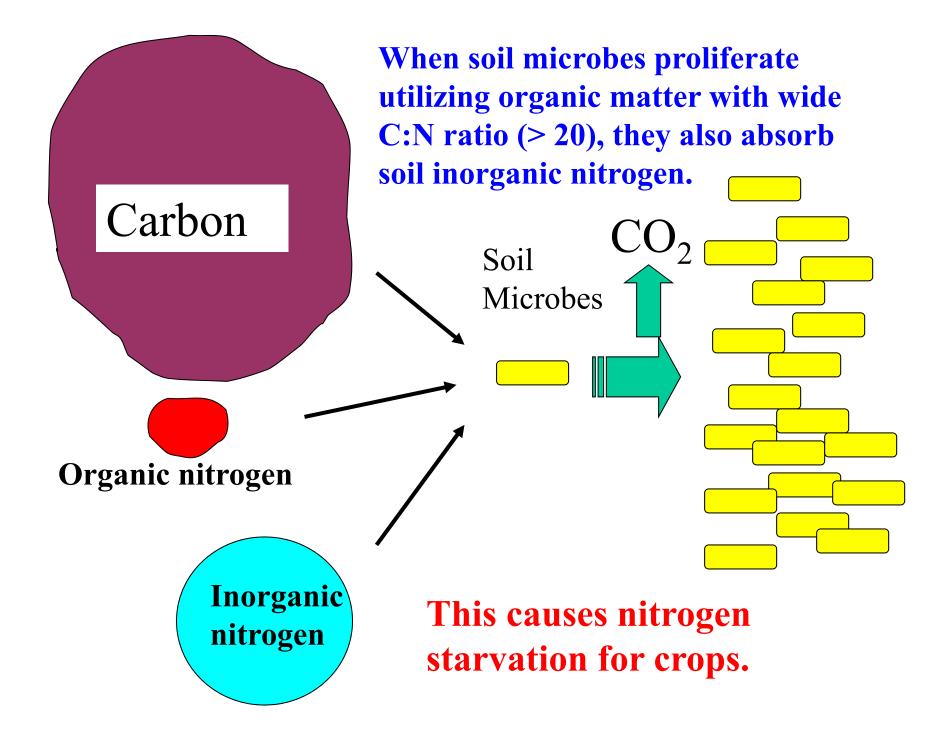
- Another measure of available nitrogen
- Soil + water (1:10)
- Autoclaved (105 °C/modified to 121 °C, 1 hour)
- Filtered
- Extracted solution is digested by Kjeldahl method
- Nitrogen is determined by colorimetry

Adjustment of N application rate according to hot water extractable nitrogen

Hot water N (mg / 100 g)	N application rate (kg / 10 a)
1, 2	24
3, 4	20
5,6	16
7, 8	12
9, 10	8
Higher than 11	8

Change in hot water extractable N in Tokachi Tokach Federation of Agricultural Co-operatives, Institute


Total Nitrogen


- Kjeldahl digestion (conc H₂SO₄+K₂SO₄+ Catalyst(Cu, Hg, Se))
 Organic N → NH₄⁺
- Instrumental (Dry combustion method)
- C/N is calculated
- C/N is related to the pattern and rate of nitrogen mineralization

Kjeldahl digestion apparatus

Release of N from organic matter applied to soil

Expected N release (kg) from 1t of organic matter (dry matter) during the following 1 year

Type of Organic Matter	Released N (kg)
Sewage sludge	70 (maximum)
Dried cow feces	31
Mature compost	19.9
Intermediately mature compost	19.5
Bark compost	19.5
Rice straw	6.5
Rice husk	5.4
Wheat straw (after long term application)	3.3
Saw dust (after long term application)	2.1

Adjustment of Fertilizer Application Rate according to Organic Matter Amendment (/ 1 t)

Organic Matter	N (kg)	P_2O_5 (kg)	K ₂ O (kg)
Crop residue compost	1	1	4
Bark compost	0	2	2
Cow feces + straw compost	2	4	7
Cow feces + bark	2	3	5
Chicken manure + bark	3	12	9
Municipal refuse compost	3	3	4
Food company garbage compost	10	7	3
Sewage sludge compost	13	15	1

Available Phosphate

- Limited resources of phosphate.
- Deficiency is common in most of soils.

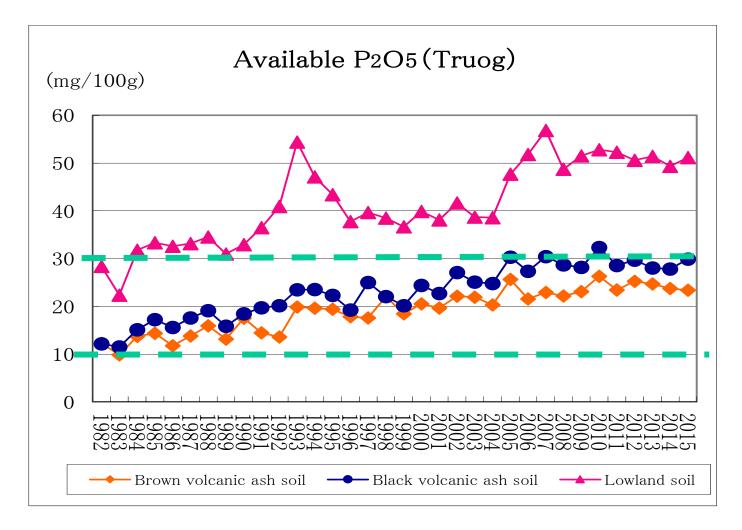
Available phosphate

- Soil phosphate which is readily absorbed by plants.
- Various extraction methods has been proposed and correlation between crop growth has been examined.
- Suitable method differs depending on soil types and crops.

Various methods for Available phosphate

- Truog method (for neutral acidic soils)
- Bray Method (No.1, No.2, No.2 modified)
 (for neutral highly acidic soils)
- Olsen method
 (for high pH CaCO₃ affected soils)
- 2.5% acetic acid extraction method (for Ca type phosphate)
- Mehlich 3 method

(for soil with pH 5.2 - 8.2)


Flow Injection Analysis of CEC and available phosphate

Truog method

- 0.001 M H_2SO_4 (with 0.3% ammonim sulphate)
- Soil:Extractant 1:200
- Shake 30 min
- Colorimetry (Molybdenum blue method)
- Calcium form phosphate
- Applied to upland field, vegetable field, orchard field, paddy nursery soil in Japan

Change in available P_2O_5 (Truog) in Tokachi Tokach Federation of Agricultural Co-operatives, Institute

Bray No2 modified method

- $0.03M NH_4F + 0.1M HC1$
- Soil:Extractant 1:20 (grassland soil)
 1:10 (paddy soil)
- Shaking time 1 minute
- Ca form phosphate, and partially Al form + Fe form phosphate are extracted.
- Applied to Paddy soil and Grassland soil in Japan

Olsen method

- To 5g of soil, 0.5 M NaHCO₃ 100ml and 1 g of Active Charcoal were added.
- Shake 30 minutes
- Applied to soils with alkaline pH

Mehlich 3 method

- 1 g of soil is extracted with 10 mL of extractant solution (0.2M CH₃COOH, 0.25M NH₄NO₃, 0.015M NH₄F, 0.013M HNO₃, and 0.001M EDTA) by shaking during 5 min. Extacts are filtered through Whatman 42 paper. P determined by colorimetry (Molybdenum blue method).
- Mehlich 3 test often measures more P than Bray 1-P on high pH, CaCO₃ affected soils.

2.5% acetic acid extraction

- 1 g of soil is extracted with 100 mL of 2.5% acetic acid once, then with 50 mL of ammonium chloride two times.
- Calcium form phosphate is extracted
- Applied to wheat field soil
- Developed in Japan, but not yet so popular.

Available Phosphate (Truog) and application rate of P-fertilizer to upland crops

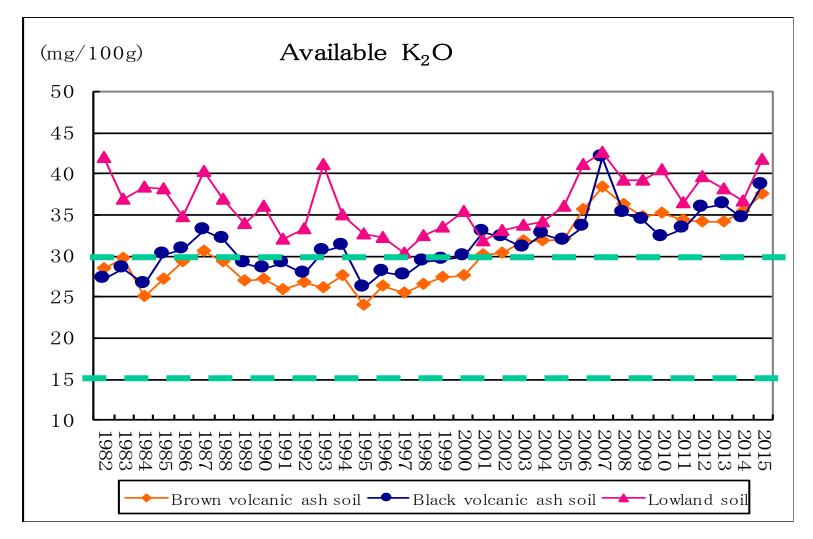
Available P_2O_5 mg/100g	Diagnosis	application rate of P-fertilizer
0 - 5	Insufficient	150 %
5 - 10	Slightly insufficient	130 %
10 - 30	Suitable	Standard rate
30 - 60	Slightly high ~ High	80%
> 60	Excess	50%

Available Phosphate (Truog) and application rate of P-fertilizer to vegetable field

Available P ₂ O ₅ mg/100g	Diagnosis	application rate of P-fertilizer
<10	Insufficient	120 %
10 - 20	Slightly insufficient	Standard rate
20 - 50	Suitable	Standard rate
50 - 100	Slightly high ~ High	50 - 80%
> 100	Excess	No application

Exchangeable bases and cation exchange capacity

Extraction apparatus for CEC


Exchangeable bases (Ca, Mg, K)

- Exchangeable bases are extracted with 1M ammonium acetate and determined.
- Atomic absorption spectrophotometer and flame photometer are used for determination.
- Exchangeable cations are readily available to crops.

Change in exchangeable CaO in Tokachi Tokach Federation of Agricultural Co-operatives, Institute

$\begin{array}{l} Change \ in \ exchangeable \ K_2O \ in \\ \hline Tokachi \ {}_{Tokach \ Federation \ of \ Agricultural \ Co-operatives, \ Institute} \end{array}$

Contents of exchangeable K_2O and adjustment of K fertilizer to upland crops

Exch. K ₂ O mg/100g	Diagnosis	K fertilizer application Values in () are for potato
0 - 8	Insufficient	150 % (130 %)
8 - 15	Slightly insufficient	130 % (110 %)
15 - 30	Suitable	Standard rate
30 - 50	Slightly high	60% (50%)
50 - 70	High	30% (20%)
> 70	Excess	0% (0%)

Cation Exchange Capacity (CEC)

- Capacity of Soil to hold cations electrostatically
- Due to minus charge on clay-minerals and humus
- Soil is first saturated with NH₄⁺ by pH7 1M ammonium acetate, then eluted with 1 M KCl.
- Eluted NH_4^+ is determined.

Standard Value for CEC

- Fundamental data for soil improvement and fertilizer management.
- Sand-dune immature soil $3-10 \text{ cmol}_c/\text{kg}$
- Gray lowland soil Light colored andosoil 15-25 cmol_c/kg
- Humic andosoil $20-30 \text{ cmol}_c/\text{kg}$

To increase CEC

- Soil dressing using clayey soil
- Organic matter amendment for many years
- Increasing CEC will be a hard work for farmers

Macro elements

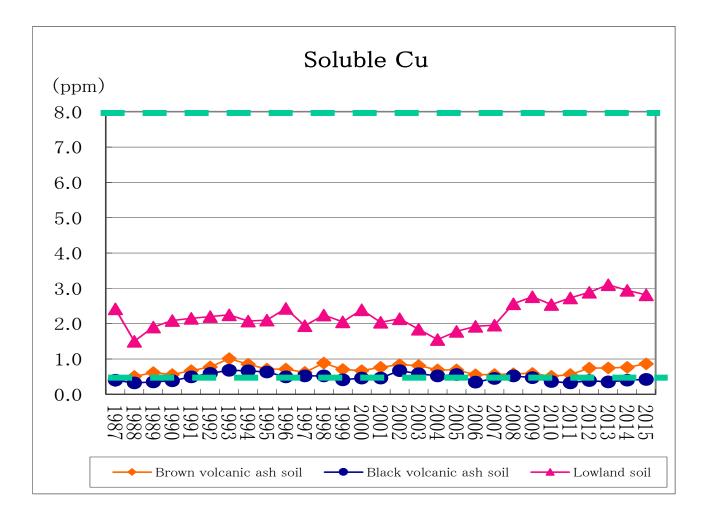
- C, H, **N**, O
- P, K, Ca, Mg, S

are applied by fertilizers.

Trace Elements

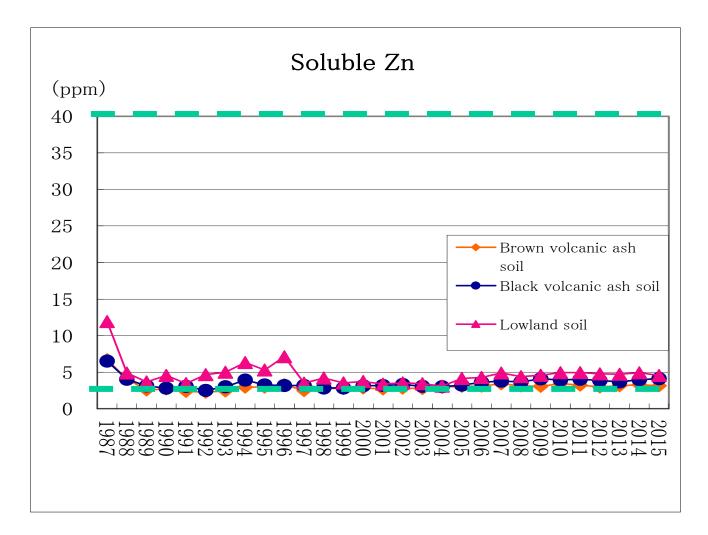
- Fe, Cl, B, Mn, Cu, Zn, and Mo are essential trace elements for plants
- Cu and Zn are extracted with 0.1N HCl (1:5)
- Boron is extracted with hot water.

Atomic Absorption Spectrometer

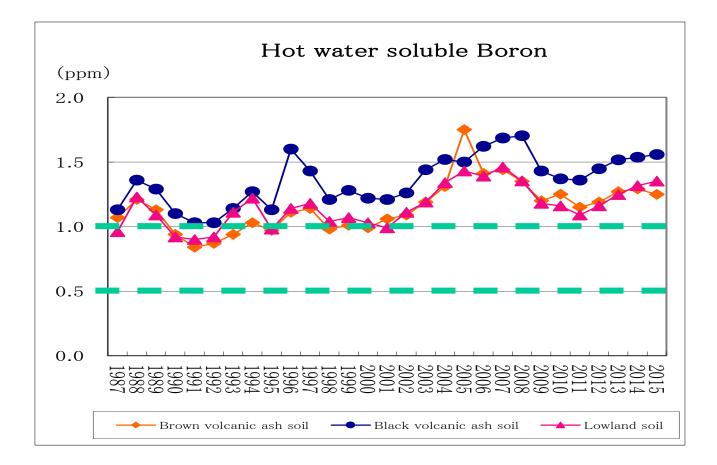


Soil diagnosis standard for trace elements

Items	Standard Value	Remarks
Soluble Cu (Cu)	0.5 ~ 8.0 ppm	Wheat (def.)
in 0.1N HCl		Azuki(excess)
Soluble Zn (Zn) in 0.1N HCl	2 ~ 40ppm	Corn•wheat (deficiency)
Hot water soluble B (B)	0.5 ~ 1.0ppm	Beet (deficiency)


Change in soluble Cu in Tokachi

Tokach Federation of Agricultural Co-operatives, Institute



Change in soluble Zn in Tokachi

Tokach Federation of Agricultural Co-operatives, Institute

Change in hot water soluble B in Tokachi Tokach Federation of Agricultural Co-operatives, Institute

Soil types and disorder in trace elements

Deficiency	Type of soils
Cu	High pH soil, humic andosoil
Zn	Sandy soil, High pH soil, peaty paddy soil
В	Sandy soil, High pH soil, peaty soil

Phosphate absorption coefficient

- Indicator for phophate absorption by soil
- Add 50ml of ammonium phosphate (pH 7.0, 13.44g P₂O₅ /l) to 25 g of dried soil. Shake 24 hours, filtered, and phosphate concentration in the filtrate is determined.
- Absorbed amount of phosphate is calculated from the difference between blank and sample.
- Expressed by absorbed amount (mg) of P_2O_5 by 100 g of soil.

Significance of phosphate absorption coefficient

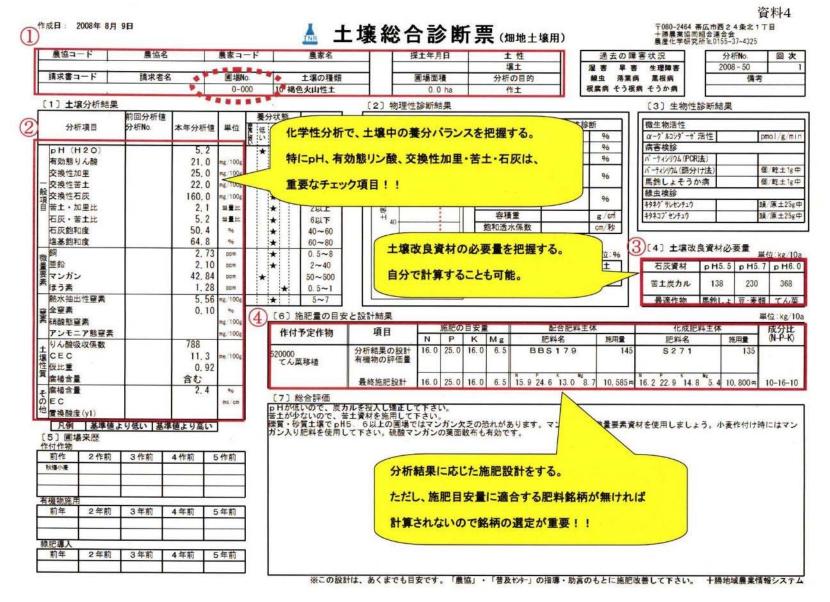
- Indicator for identifying Kuroboku soil. (>1500 mg $P_2O_5/100g$)
- Estimate the rate of phosphate application.
- Instead of chemical determination, nearinfrared analysis is also used.

Near-infrared analyser

Other useful elements

- Na for sugar beet
- Si for rice
- Al for tea

Are useful for limited types of plants.


Other items for soil diagnosis

- Particle size analysis
- Penetrometer
- Enzyme activity (α-Glucosidase)
- Nematodes

Data processing

Soil diagnosis chart of Tokachi federation of Agricultural Cooperatives

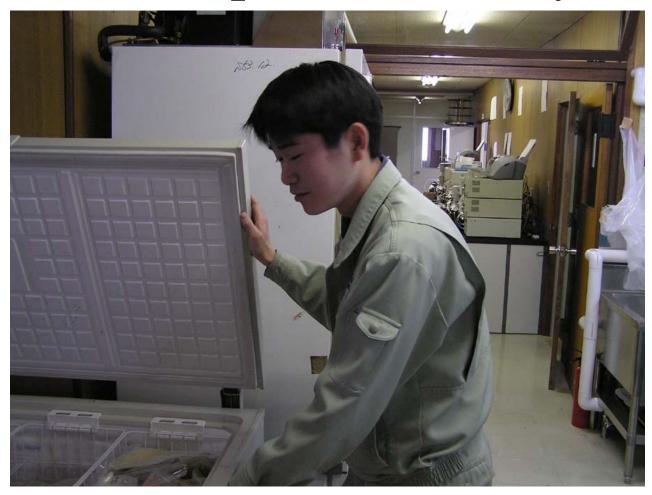
Application of soil diagnosis is beneficial for

- Proper fertilization
 Save fertilizer cost
 Secure healthy growth and high yield
 Prevent environmental pollution by
 excess fertilizer.
 - Maintain soil fertility
 - Prevent soil deterioration

Use of Soil Diagnosis in Tokachi District

- 24.1 % of farmers are practicing soil diagnosis annually.
- 47.1 % occasionally.
- 23.1 % have some experience.
- 5.7 % have no experience of soil diagnosis.
- Results of soil diagnosis are used to calculate the application rates of fertilizers and soil improving materials.

Laboratory and facililties

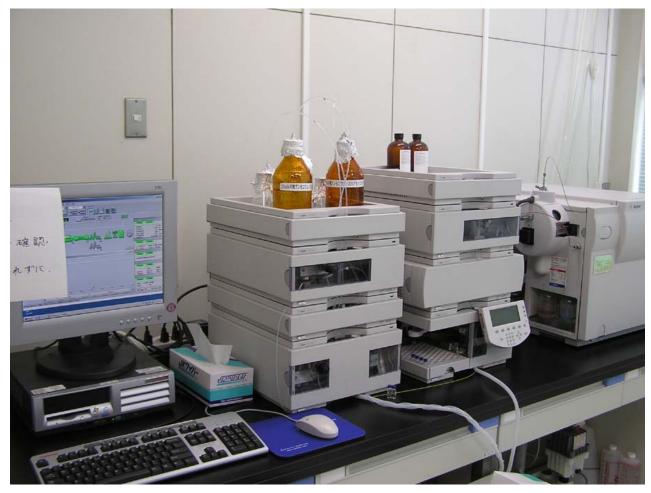

Outlook of the laboratory

Entrance of soil analysis laboratory of Tokachi Federation of Agricultural Co-operatives

Residual pesticide analysis

Friezed samples of agricultural products for pesticide analysis

Pesticide extraction room


HPLC with auto-sampler

GC-MS Apparatus

LC-MS Apparatus

ECD Gas-chromatograph

High Performance Liquid Chromatography (HPLC)

